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Abstract

The thermal dispersion and heat-transfer processes in the thermally-developing region of a sintered porous metal
channel with asymmetric heating are analyzed by a two-equation model. The two-equation model considers di�erent
energy equations for the bronze and air due to the large di�erence in their thermal conductivities. In order to

account for the large heat-transfer characteristics caused by the growth of thermal boundary layer in the thermal
entrance region, the thermal dispersion conductivity is modeled as the product of an entrance-e�ect function, the
dispersive length and the Peclet number. The empirical coe�cients in the entrance-e�ect function are determined by

comparing the experimental data. From the calculated results it is found a two-equation model underpredicts the
Nusselt number if the thermal-entrance e�ect function is not included in the model. A parametric study is also
conducted to investigate the e�ect of Peclet number and thermal conductivity ratio on the calculated Nusselt

number distribution. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to its augmented heat and mass transfer, por-

ous media has been widely applied in various industrial
applications such as chemical catalytic beds, electronic
cooling, high-e�ciency heat exchangers, etc. The heat
transfer augmentation of porous media is mainly

caused by the thermal dispersion of the ¯uid and the
large contact-surface area between the solid matrix and
the ¯uid. In the applications of electronic cooling and

heat exchanges, porous materials with large thermal
conductivity, such as bronze, copper, aluminum, and

other metals, are usually adopted to enhance the heat
transfer e�ciency.

In a recent paper by Hsu and Cheng [8], the model-
ing of thermal dispersion was surveyed in detail and
the thermal dispersion conductivity tensor for convec-

tion in a porous medium was derived based on the
method of volume averaging of the velocity and tem-
perature deviations in the pores. According to Hsu
and Cheng [8], the e�ect of thermal dispersion on the

forced convection in porous media has been well docu-
mented in the chemical engineering literature
[2,14,15,21,22]. In these studies, the transverse or radial

thermal dispersion conductivity was correlated as a
function of Peclet number, i.e.

k�t
kf
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where Pem is de®ned as the product of the Prandtl
number of the ¯uid and the Reynolds number based
on the mean volume-averaged velocity and the particle

diameter.
For ®brous media with high porosity, Koch and

Brady [11] and Hunt and Tien [9] adopted a similar

approach in which the thermal dispersion conductivity
was de®ned as the product of the volume-averaged vel-
ocity, ®ber thickness, and a constant depending on the

porosity. Using this approach, the thermal dispersion
conductivity equals

k�t � rCpg
������
Ku
p

�2�

where g is the dispersion coe�cient, and the square

root of the permeability
����
K
p

is related to the ®ber
thickness.
In order to analyze the steep temperature gradient,

observed by Schroeder et al. [16], near the wall of a
packed column, Cheng and his coworkers [3±7] intro-
duced a dimensionless dispersive length represented by

a van Driest type wall function into the modeling of
the thermal dispersive conductivity, i.e.

k�t
kf

� DTPem`u=um �3�

` � 1ÿ exp� ÿ y=wd� �4�
where ` is the dimensionless dispersive length account-

Nomenclature

A area of ¯ow channel
a speci®c surface area per unit volume
C1 empirical constant in Eq. (24)

Cd dimensionless speci®c surface area de®ned in
Eq. (14)

Ce empirical constant in Eq. (10)

Ch empirical constant in Eq. (8)
Cp speci®c heat at constant pressure
DA Darcy number de®ned in Eq. (14)

DT thermal dispersion constant
d diameter of the beads
E entrance-e�ect function
F inertia coe�cient

H channel height
hloc local convective heat transfer coe�cient
q constant heat ¯ux at the bottom wall

K permeability
kf thermal conductivity of ¯uid
�kR ratio of e�ective thermal conductivities de®ned

in Eq. (14)
ks thermal conductivity of solid
k�f e�ective thermal conductivity of the ¯uid

k�s e�ective thermal conductivity of the solid
k�t thermal dispersion conductivity
Lent length scale of the thermal entrance region
` dimensionless dispersive length

M Mach number
mh empirical constant in Eq. (8)
N total number of grid points in y-direction

N1 empirical constant in Eq. (24)
Nu Nusselt number
ne empirical constant in Eq. (10)

nh empirical constant in Eq. (8)
p average pressure of the ¯uid
Pe Peclet number
Pr Prandtl number

Pem Peclet number based on the mean ¯ow velocity
and the particle diameter

R gas constant

Re Reynolds number
T volume-averaged temperature
u volume-averaged velocity of the ¯uid in the x-

direction
um mean volume-averaged velocity of the ¯uid in

the x-direction

v volume-averaged velocity of the ¯uid in the y-
direction

w empirical constant in Eq. (4)
x x-coordinate

y y-coordinate

Greek symbols

r density
m viscosity
e porosity

k ratio of speci®c heat
g dispersion coe�cient in Eq. (2)
g1 empirical constant in Eq. (24)

Subscripts
f ¯uid
i number of grid point in y-direction

s solid
o inlet condition
w wall condition

center condition
1 thermally fully-developed condition

Superscripts
� dimensionless variable
k number of iteration
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ing for the wall e�ect on the thermal dispersion con-

ductivity and u=um was introduced to account for the

local volume-averaged velocity variation. From their

studies, Cheng et al. [3] concluded that the use of a

van Driest type wall function in Eq (4) is necessary to

reproduce theoretically the steep temperature gradient

observed in the experiment conducted by Schroeder et

al. [16].

In these studies, the constants, DT, g and w in

Eqs. (1)±(4) were determined by matching exper-

imental data. In the past, the experimental data

adopted for the determination of these constants

were either the Nusselt number for thermally fully-

developed ¯ows [21,22] or the temperature distri-

bution at a particular axial location [16]. Therefore,

none of the existing correlations of thermal dis-

persion was developed from the experimental data

of the thermally-developing region of porous media.

In addition, none of these studies were conducted

for metal porous media. As a result, very little

attention was paid to the study of heat transfer

processes in the thermally-developing region of por-

ous materials with large thermal conductivity, and

the study of thermal dispersion in thermally-develop-

ing regions remains inadequate.

In the use of porous media for the application of

high-performance heat exchangers, the length of the

¯ow passage of a heat exchanger is often short. Under

such circumstances, the thermal-entrance region oc-

cupies a signi®cant portion of the total length of the

¯ow passage of a heat exchanger, and therefore, the

e�ect of thermal-entrance region should be considered.

In this work, the heat transfer and thermal dispersion

in the thermally-developing region of a sintered bronze

porous annulus are studied with a two-equation

model. The two-equation model considers di�erent

energy equations for the bronze (with large thermal

conductivity) and air due to the large di�erence in

their thermal conductivities. A thermal-entrance e�ect

function is included in the modeling of thermal dis-

persion to account for the enhanced heat-transfer

characteristics of the ¯uid caused by the growth of the

thermal boundary layer in the thermally-developing

region. The empirical constants in the thermal-entrance

e�ect function are determined by comparing with ex-

perimental data of Hwang and Chao [10], in which the

axial wall temperature distributions in a hydraulically

fully-developed, thermally-developing porous channel

are measured under di�erent heating and Reynolds

number conditions. The goal of this work is to develop

an empirical correlation of the thermal dispersion con-

ductivity for the thermally-developing region of a

metal porous channel with large thermal conductivity.

In addition, the heat transfer processes in the ther-

mally-developing region are also studied.

2. Theoretical approach

The theoretical model of this work considers
hydraulically fully-developed, thermally-developing air

¯owing through a sintered brass channel with asym-
metric heating to simulate the experimental condition
of Hwang and Chao [10]. The channel height is 1 cm.

The top wall of the channel is thermally insulated and
the bottom wall is subjected to constant heat-¯ux
boundary condition (see Fig. 1). The momentum

equation based on the Brinkman±Darcy±Ergun model
[3,8±10] for hydraulically fully-developed region is

ÿdp

dx
� m

K
u� rfF����

K
p u2 ÿ m

e
d2u

dy2
�5�

where e is the porosity of the sintered brass channel,
u the volume-averaged local velocity (also termed
seepage velocity, ®ltration velocity or super®cial

velocity), K the permeability, and F the inertia
coe�cient.

In modeling the heat-transfer processes, most of the
research work done in the past adopted the local ther-

mal equilibrium assumption to combine the energy
equations for the solid matrix and the ¯uid into a
single one. However, in their study of the convective
heat transfer in a sintered brass channel, Hwang and

Chao [10] showed that it was necessary to use a two-
equation model to correctly predict the Nusselt num-
ber under the condition of large di�erence in the solid

and ¯uid thermal conductivities. In this work, the
volume-averaging is applied to the solid and the ¯uid
to obtain the following two energy equations. [1].

0 � hloca�Tf ÿ Ts � � @

@y

�
k�s
@Ts

@y

�
�6�

Fig. 1. Schematic diagram of the physical model.
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where k�s is the stagnant thermal conductivity of the

solid, k�f the e�ective thermal conductivity of the ¯uid,
hloc the internal convective heat-transfer coe�cient
between the solid and the ¯uid, a the speci®c interface

surface area per unit volume (=20.34 �1ÿ e�e2=d
[10,12]). k�s and k�f are considered to be functions of
temperature in this study. The convective heat transfer

coe�cient, hloc, has been determined experimentally by
various researchers [12,13,17,20] and is modeled as

hloc � chRe
nhPrmh Re � rfud

m
�8�

where ch, nh and mh are empirical constants and their

values are 0.004, 1.35, and 0.333, respectively, for
ReR100, and 0.0156, 1.04, 0.333 for Re > 100:
The e�ective thermal dispersion conductivity, k�t , re-

sponsible for the heat transfer introduced by the vel-
ocity deviation caused by the solid matrix, is related to
the Peclet number, the dispersive length, and an

entrance-e�ect function.

k�t
kf

� DTPe`E �9�

where Pe is the Peclet number based on the volume-

averaged local velocity, ` is the dispersive length given
in Eq. (4) and E is the entrance-e�ect function, which
accounts for the enhanced thermal dispersion caused
by the growth of thermal boundary layer in the ther-

mally-developing region. The entrance e�ect function
is expressed as

E � 1� Ce�x=Lent �ÿne=Reo �10�

where Lent is the characteristic length scale of the
thermal entrance region which is proportional to the
Prandtl number and Reynolds number based on

the entrance ¯uid velocity and the height of the ¯ow
passage, Ce and ne are empirical constants. The form
of the entrance-e�ect function is determined by the fol-
lowing phenomenological considerations. In Eq. (10),

�x=Lent� represents the ratio of axial distance to the
scale of thermal entrance length. Based on Eq. (10),
the entrance function is inversely proportional to the

ratio of the axial distance to thermal entrance length.
At the axial location where �x=Lent� is small, i.e. the
region where thermal boundary layer just started to

grow, the value of entrance e�ect function is large to
account for the strong thermally-developing e�ect.
When the ¯ow is thermally fully developed, the value

of entrance-e�ect function approaches unit and its
e�ect diminishes.

In closing the model, the ideal-gas equation of state
and mass conservation equation for the ¯uid adopted
in the model are given below.

p � rfRTf �11�

�
rfu dA � rouoA �12�

@ �rfu�
@x

� @ �rfv�
@y

� 0 �13�

Eqs. (5)±(7) and (11)±(13) can be nondimensionalized

by introducing the following dimensionless variables:

�x � x=H �y � y=H �u � u=u0 �p � p=rfu
2
0

�H � H=d Ts � Ts=T0 Tf � Tf=T0 rf � rf=rf0

DA � K

H 2
Prf � Cpf

mÿ
k�f � k�t

� Red � rfu0
m

Cd � ad

Pef � PrfRed Nud � hlocdÿ
k�f � k�t

� �kR � k�f � k�t
k�s

�14�

After non-dimensionalization, Eqs. (5)±(7) and (11)±

(13) become:

ÿd �p

d �x
�
�

1
�HRedDA

�
�u�

�
F�������
DA

p
�

�u2

ÿ
�

1

e �HRed

�
d2 �u

d �y2
�15�

0 � Nud
�kRCd

�H
2ÿ
Tf ÿ Ts

�
� d2Ts

d �y2
�16�

 
�u
@Tf

@x
� �v

@Tf

@ �y

!

� NudCd
�H

Pef

ÿ
Ts ÿ Tf

�
� @

@ �y

"�
1

Pef
�H

�
@Tf

@ �y

#
�17�

@ �rf �u�
@ �x

� @ �rf �v�
@ �y

� 0 �18�

�p � Tfÿ
kM2

0

� �19�
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1

A

�
rf �u dA � 1 �20�

When the bottom wall is at constant heat-¯ux con-
dition, the boundary conditions are:

at �y � 0 �u � 0 �v � 0

k�sT0

Hq

@Ts

@ �y
�
ÿ
k�f � k�t

�
T0

Hq

@Tf

@ �y
� ÿ1

at �y � 1 �u � 0
@Ts

@ �y
� @Tf

@ �y
� 0 �21�

Governing equations (15)±(20) with boundary con-
ditions are solved numerically for the velocity, the ¯uid
and solid temperatures, the ¯uid density, and the press-

ure. Based on the de®nition of Nusselt number, the
local Nusselt number can be deduced from the follow-
ing equation:

Nux �

"ÿ
k�f � k�t

�@Tf

@y

����
y�0
�ÿk�s �@Ts

@y

����
y�0

#
2H�

k�f �Tw ÿ T0 �
� �22�

where T0 is the entrance temperature of the ¯uid.

In solving the governing equations, the governing
equations in the physical plane of the problem are
transformed into a new set of governing equations in a

computational plane according to the following trans-
formation equations.

x � x

y � H

2
�1ÿ cos Z�

The transformation allows the setup of ®nely spaced
grid in the y-direction near the top and bottom walls

in the physical plane, while maintain a uniform grid in
the computational plane. Central di�erence for y-direc-
tion and backward di�erence for x-direction are

adopted to discretize Eqs. (15)±(17) and form a tridi-
agonal system of ®nite-di�erence equations. The set of
tridiagonal ®nite-di�erence equations is solved numeri-
cally by a standard matrix solver. Eq. (18) is solved in

its integral form to obtain v:
Before Eqs. (15)±(18) are solved numerically, a

pressure drop is guessed. Eqs. (15)±(18) are then solved

to obtain converged ¯uid and solid properties. These
¯uid properties are substituted into Eq. (20) to check
the conservation of mass. If not, the value of pressure

drop is adjusted until Eq. (20) is satis®ed within
0.01%. The criterion of convergence for Eqs. (15)±(18)
is

1

N

XN
i�1

8<:0:4
������

�T
k�1
f, i ÿ �T

k

f, i

�T
k

f, i

������� 0:4

������
�T
k�1
s, i ÿ �T

k

s, i

�T
k

s, i

������
� 0:1

����� �uk�1i ÿ �uki
�uki

������ 0:1

����� �vk�1i ÿ �vki
�vki

�����
9=;R10ÿ5 �23�

The determination of the values of weights of relative
errors for Tf , Ts, �u, and �v is based on the following
considerations: (1) One of the major work items of this
study is to calculate the Nusselt number distributions

along the axial direction at di�erent Reynolds num-
bers. Since the Nusselt number is directly linked and
most sensitive to the temperature pro®les, the weights

of relative errors for Tf and Ts are set larger than
those for �u and �v: (2) During the numerical calculation,
it is noted that �u and �v can easily achieve their con-

verged values, but not Ts and Tf : As a result of this
fact, larger weights of the relative errors for Tf and Ts

are set to assure the convergence of the calculation.

To assure the accuracy of the computer program,
the calculated ¯ow and solid properties are substituted
back into the governing equations (Eqs. (15)±(20)) to
compute the relative residual of each equation. The

relative residual of each equation is less than 10ÿ7. The
overall energy conservation is examined and found to
be within 1%. The grid-independent test is also con-

ducted to determine the proper number of grid points
in the axial and transverse directions.

3. Results and discussion

3.1. Veri®cation of theoretical model

In order to verify the simulation accuracy of the

theoretical model and numerical code developed in this
study, a theoretical calculation is performed to simu-
late the heat-transfer processes of water in a variable-

porosity channel packed with glass spheres under
asymmetric heating conditions. The calculated results
are compared with measured [16] and calculated [3]

transverse temperature and velocity pro®les at di�erent
Reynolds numbers.
Since the goal of this part of the work is to verify

the simulation accuracy by comparing the calculated

results from this work with the works by Cheng et al.
[3] and Shroeder et al. [16], the theoretical model given
in Section 2 is modi®ed according to Cheng et al.'s [3]

work. In the modi®cation, the energy equations for the
solid and ¯uid are combined into a single energy
equation via the assumption of local thermal equi-

librium. The porosity is considered to be variable and
empirical correlations given below [3] are used to cal-
culate the porosity distribution.
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e � e
�
1� C1 exp� ÿN1y=g1 �

�
0RyRH=2

e � e
�
1� C1 exp

�ÿN1�Hÿ y�=g1
�	

H=2RyRH �24�

All input data and boundary conditions are the same
as those in the works of Cheng et al. [3] and Shroeder

et al. [16].
Fig. 2 shows the calculated velocity distributions

compared with those from Cheng et al. [3] for Re �
100 and 10. It is seen that the comparison is in good
agreement. The velocity increases drastically from the
wall to a location near the wall; then it decays gradu-
ally. This so-called "channelling e�ect" in the velocity

®eld is caused by the large variation in porosity near
the wall region. This large variation in porosity is con-
sidered in the model via the use of Eq. (24) for the de-

termination of the porosity distribution within the
packed channel.
Fig. 3 shows the comparison of calculated tempera-

ture distributions from this work and those from
Cheng et al. [3] and Shroeder et al. [16]. The compari-
son of the calculated temperature distributions from
the present work and Chen, et al. [3] shows good

agreement. The calculated temperature distributions
are in reasonable agreement with the experimental
data of Shroeder et al. [16]. The slight discrepancy

between the calculated results (from Chen et al. [3] and
the present work) and the experimental data by Shroe-
der et al. [16] may be attributed to the fact that the

porosity distribution of the porous material used in the
experimental work of Schroeder et al. was not
measured. And therefore, the porosity distribution cal-

culated by Eq. (24) may deviate from the actual poros-
ity distribution of the experiment.

In order to simulate correctly the steep temperature
gradient near the wall region, the wall function given

in Eq. (4) is adopted in the analysis. It should be
noted that in order to obtain good agreement between
the measured and calculated temperature data, the

empirical constants DT and w should be adjusted
according to the value of N1 used in the analysis [3].
The values of DT, w, and N1 used in the analysis are

the same as those of Cheng et al. [3]. From Figs. 2 and
3, it is seen that the calculated velocity and tempera-
ture distributions from the model and numerical code

developed in this work compare well with previous
works. The channelling e�ect in the velocity distri-
bution and steep temperature gradient near the wall
can be successfully simulated by the model and compu-

ter code.

3.2. Determination of empirical constants in the
entrance-e�ect function

To determine the empirical constants in the

entrance-e�ect function, the calculated results from the
theoretical model and numerical code of this work are
compared with the measured experimental data for the

thermal-entrance region (the ¯ow is hydraulically fully-
developed) of a 5� 5� 1 cm porous channel [10]. The
porous material is made of sintered bronze beads with

a mean diameter, d � 0:72 mm. The top and the bot-
tom walls of the porous channel are at adiabatic and
constant heat ¯ux conditions, respectively. The values
of various parameters used in the analysis are given in

Table 1.
Simulation of the heat-transfer processes is ®rst car-

Fig. 3. Comparison of temperature distributions from present

work (calculation), Cheng et al. [13] (calculation), and Shroe-

der et al. [16] (experimental data).

Fig. 2. Comparison of calculated velocity distributions from

present work and Cheng et al. [13].
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ried out for the thermally-developed region
�x=Hr1:755, based on Hwang and Chao [10]) of the

sintered porous channel. In the simulation, the
entrance-e�ect function is set to 1 �E � 1� to eliminate
its e�ect. Di�erent values of DT are used in the simu-

lation. It is found that with DT � 0:375, the predicted
temperatures at the bottom wall best match the exper-
imental data for the thermally-developing region under

di�erent Reynolds numbers and constant heat-¯ux
conditions.
After the value of DT is determined, calculations of

the heat-transfer characteristics are performed with
di�erent values of Ce and ne: The calculated tempera-
ture distributions are then compared with the
measured data for thermally-developing region [10].

The values of Ce and ne are selected based on the best
match between the calculated and measured tempera-
ture distributions. For DT � 0:75, it is found that the

calculated temperature distributions based on Ce �
0:63 and ne � 125:4 best match the experimental
measurements as shown in Fig. 4. In this process, it is

noted if the thermal-entrance e�ect function is not
adopted in the modeling of thermal dispersion conduc-
tivity, a good match between the calculation and ex-

perimental data in the thermal-entrance region cannot
be obtained. It would over-predict wall temperature
distributions in thermal-entrance regions. This point
will be further discussed in Fig. 7.

From Fig. 4, it is noted that the axial temperature
gradient at the bottom wall increases with increasing
heat-¯ux level. This is due to the fact that at higher

heat-¯ux conditions, more heat per unit axial length is
transferred to the porous channel and introduces
greater temperature rise. On the other hand, the

increase in Reynolds number decreases the axial tem-
perature gradient at the bottom wall, which is caused
by the stronger cooling e�ect of the air at higher Rey-
nolds numbers. Fig. 4(c) and (d) show some cross-

overs of various temperature distributions (which are
well simulated by the theory). This is caused by di�er-
ent inlet air temperatures during experiments. For

example, in Fig. 4(c), the inlet air temperature for
Re � 109 is lower than that for Re � 154: The tem-

perature gradient for Re � 109, however, is greater
than Re � 154: As a result of lower inlet air tempera-
ture and higher temperature gradient for Re � 109, a

crossover exists at x=H10:4:

3.3. Heat transfer characteristics in the thermally-

developing region

After empirical constants for the thermal-entrance
e�ect function have been determined by comparing ex-
perimental data, the calculated solid and ¯uid tempera-

ture distributions at di�erent axial locations are given
in Fig. 5 for Re � 109, q � 16 kW/m2. From Fig. 5, it
can be seen that near the bottom wall, the temperature

gradient of the ¯uid is signi®cantly larger than that of
the solid due to the large di�erence in their thermal
conductivities. It is also noted that the dimensionless

temperature pro®les of the solid remain the same at
the six axial locations shown in Fig. 5. This indicates
the solid phase has a very short thermal entrance
length. It should be noted, however, that the ``tempera-

ture'' of the solid phase actually varies signi®cantly in
the axial direction when it is converted from a dimen-
sionless to a dimensional quantity. On the other hand,

the dimensionless temperature pro®le of the ¯uid varies
along the axial direction, and it approaches the pro®le
at x=H � 5:0:
The calculated temperature di�erence between the

solid and the ¯uid is given in Fig. 6. It is noted that
there is a signi®cant temperature di�erence between

the solid and the ¯uid due to the large di�erence in
their thermal conductivities. This phenomenon of tem-
perature di�erence between phases was also observed
by Amiri and Vafai [23] and Amiri et al. [24] in their

studies of forced convective incompressible ¯ow
through porous beds under constant wall temperature
or constant heat ¯ux conditions. The location of maxi-

mum temperature di�erence moves away from the
heated wall along the axial direction. At x=H > 1:0,
the location of the maximum temperature di�erence is

at the top wall location due to the fact that the ¯ow
has become thermally fully developed.
Fig. 7 shows the comparison of calculated axial dis-

tributions of Nusselt number using six di�erent

models. Models 1±3 are one-equation models, in
which the local thermal equilibrium assumption is
adopted, and therefore Ts � Tf and Eqs. (6) and (7)

are combined into a single equation. In model 1, the
thermal dispersion conductivity, k�t , is modeled as
given in Eq. (9). In model 2, the thermal dispersion

conductivity is modeled as in model 1 but the ther-
mal-entrance e�ect function, E, is set to unit. In
model 3, the thermal dispersion conductivity is set to

Table 1

Input data used in the numerical calculation

Parameter (unit) Value Parameter (unit) Value

Cp (J/kg K) 1007 ne 95

Ce 0.47 P0 (Nt/m2) 1.366

DT 0.375 R (J/kg K) 288

d (mm) 0.72 T0 (K) 303.5

e 0.37 u0 (m/s) 3.643

F 0.242 w 1.5

H (m) 0.01 r0 (kg/m3) 1.563

q (W/m2) 0.8Eÿ4±3.2Eÿ4 m (N s/m2) 184.6Eÿ7
K (m2) 2.9Eÿ10
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zero. Models 4±6 are two-equation models, in which

di�erent energy equations are considered for the solid
and the ¯uid. Model 4 is the model developed in this

work. In terms of modeling of thermal dispersion

conductivity, model 4 is the same as model 1, model
5 the same as model 2, and model 6 the same as

model 3. Fig. 7 shows that the calculated Nusselt
numbers from one-equation models (models 1±3) are

signi®cantly larger than those from the two-equation
models (models 4±6). This is due to the fact that the

assumption of perfect heat-transfer between the solid

and the ¯uid is adopted in one-equation model. This
enhances the heat transfer from the heated wall to

the ¯uid through the solid. It is noted that from the

overlapping of the Nusselt number distributions cal-

culated from models 1±3, it is concluded that the way
the thermal dispersion conductivity is modeled does

not a�ect signi®cantly a�ect the calculated Nusselt

number. This is due to the fact that the value of the
thermal dispersion conductivity in the energy equation

of one-equation model is signi®cantly less than the
large thermal conductivity of the solid (bronze) con-

sidered in this study. By comparing the calculated
Nusselt number distributions from the present model

(model 4) and model 5, it is noted that if the ther-

mal-entrance e�ect function were not included in a
two-equation model, the distribution of Nusselt num-

ber would be underpredicted.

Fig. 4. Comparison of measured and calculated wall-temperature distributions at di�erent Reynolds numbers and heat ¯uxes. (a)

32 kW/m2, (b) 24 kW/m2, (c) 16 kW/m2, (d) 8 kW/m2.
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3.4. E�ect of thermal conductivity ratio and Peclet

number

In this work, a large thermal conductivity material,

bronze, was considered as the solid matrix for enhan-
cing the heat transfer. This is di�erent from the appli-
cations of chemical catalyst beds, in which low thermal

conductivity materials are used as the catalyst beds for
enhancing and/or initiating chemical reactions. When

analyzing heat-transfer processes in porous media
using large thermal conductivity metals, it is imperative
to use two-equation models to consider separate

energy equations for the solid matrix and the ¯uid.
Fig. 8 shows the e�ect of the ratio of the thermal con-

ductivity of the ¯uid to that of the solid on the calcu-
lated Nusselt number distributions from one-equation

model (model 1 in previous section) and two-equation
model (model 4 in previous section). It is seen that at
low thermal conductivity ratio �kR � kf=ks � 5:0Eÿ 4�
similar to the condition that the air ¯ows in the bronze
matrix, the calculated Nusselt number distribution

from one-equation model is signi®cantly larger than
that from two-equation model. As the ratio of thermal
conductivity kR increases the calculated Nusselt num-

ber distributions using the two models are getting clo-
ser due to the fact that the solid and ¯uid in the

porous channel become more homogeneous under this
condition. In the past, several researchers have used
di�erent dimensionless variables to investigate the

local-thermal-equilibrium (LTE) condition in porous
medium. For example, Amiri and Vafai [23] and Amiri

et al. [24] used Reynolds number and Darcy number
�� K=H 2� to investigate the LTE assumption. Hwang

and Chao [10] used Biot number �� hlocaH
2=k�s � to in-

vestigate the temperature di�erence between the solid

the ¯uid. In general, the trend obtained in this study is
consistent with those studies.
Another important factor a�ecting the ratio of Nus-

selt number distributions calculated from one-equation
and two-equation models is the Peclet number �Pe �
rfu0Cpf

d=kf �: The e�ect of Peclet number on the calcu-

lated Nusselt number distributions in shown in Fig. 9.
It is seen that when kR � 5:0Eÿ 4, the increase in Pe
will decrease the ratio of the calculated Nusselt num-

ber from the two models. This is due to the fact that
as Pe is increased, the internal heat transfer between

Fig. 5. Calculated dimensionless solid and ¯uid temperature

distributions.

Fig. 6. Calculated dimensionless temperature di�erence.

Fig. 7. E�ect of di�erent models on the calculated distribution

of Nusselt number.

W.H. Hsieh, S.F. Lu / Int. J. Heat Mass Transfer 43 (2000) 3001±3011 3009



the solid and the ¯uid increases. At kR � 5:0Eÿ 4,
though Pe is increased to 400, the minimum ratio of
the calculated Nusselt numbers from the two models is
still greater than 2. From the calculated results, it is

found that at kR � 5:0Eÿ 4, the further increase in the
value of Pe from 400 to larger values would not reduce
signi®cantly the ratio of calculated Nusselt numbers.

One way to further reduce the ratio is to increase the
thermal conductivity ratio kR: As shown in Fig. 9, at
Pe � 400, when kR is increased from 5:0Eÿ 4 to

5:0Eÿ 3, the Nusselt number ratio decreases signi®-
cantly. This indicates that the KR is a dominant factor

in a�ecting the calculated Nusselt number ratio under
the condition studied in this work.

4. Summary and conclusions

Summary and conclusions of this study are given
below.

1. The heat-transfer process in the thermally develop-

ing region of a sintered bronze porous annulus is
analyzed by a two-equation model to take into
account the large thermal conductivity of the bronze

matrix. A thermal-entrance e�ect function is
included in the modeling of the thermal dispersion
conductivity to account for the enhanced heat-trans-

fer characteristics of the air caused by the growth of
thermal boundary layer in the thermally-developing
region. The empirical constants in the thermal-
entrance e�ect function are determined by compar-

ing the experimental data at di�erent Reynolds
numbers and heat ¯ux conditions.

2. Due to large di�erence in the thermal conductivities

of the bronze matrix and air, signi®cant temperature
di�erence between them exists in the porous annu-
lus. The location of maximum temperature di�er-

ence moves away from the heated wall along the
axial direction.

3. Under the condition studied in this work, one-

equation model overpredicts the Nusselt number
distributions. If the thermal-entrance e�ect function
were not included in a two-equation model, the dis-
tribution of Nusselt number would be underpre-

dicted.
4. A parametric study is performed in this work.

Results show that when the ratio of the thermal

conductivity of the ¯uid to the solid increases, the
Nusselt number distributions calculated from a one-
equation model are getting closer to that from a

two-equation model.
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